2009年毕业于中山大学获博士学位。2009 年7 月至今在华南师范大学生物光子学研究院工作。主要从事纳米材料制备、肿瘤细胞检测与肿瘤治疗、纳米材料与生物体相互作用机制等领域的研究工作。迄今为止,在Small,Nanoscale, Advanced Functional Materials, Applied Physics Letters,Physical Review B/E 等国际知名SCI学术刊物发表论文五十余篇。受邀为国际材料科学领域权威综述刊物Progress in Materials Science撰写一篇关于纳米材料制备的综述文章(X. L. Li et al., Progress in Materials Science, 64, 121 (2014))(影响因子31.56)。
2023年硕士研究生调剂信息
研究生阶段主要从事图像处理、图像分析、机器学习研究工作。欢迎对图像处理、图像分析感兴趣的物理、数学、光电信息工程等相关专业的考生申请调剂。
拟接收调剂专业包括:
1.学硕:070207 光学,0702J1 生物医学光子学,080300 光学工程
2.专硕:085408 光电信息工程
请有意调剂到本课题组的同学将个人简历或情况介绍(个人基本信息(姓名、性别、联系电话等)、考研成绩(总分,考试科目及单科成绩)、报考院校与报考专业、本科院校与专业、四六级成绩、本科学习成绩等内容)发送至邮箱:xlli@scnu.edu.cn
邮件标题请按“本科院校名称-姓名-报考院校名称-本科专业或报考专业-考研分数”格式,如“山东大学-张三-北京大学-物理-320”
课题组介绍
本课题组主要开展物理、生物、材料、化学、医学等学科交叉的生物物理、生物医学材料领域的理论与实验研究工作。目前本课题组主要研究方向有:
1、 纳米材料与细胞相互作用机制研究;
2、 纳米材料在肿瘤诊断和治疗中的应用;
3、细胞图像分析处理与机器学习
目前本课题组在读博士研究生1名,硕士研究生8名。本课题组已培养博士毕业生1名,硕士毕业生9名,均以优异成绩获得学位,即:
明瑞琪 (2022届 学硕,华南师大十佳学术论文,目前在北京理工大学攻读博士学位)
发表一作SCI论文2篇:[1] Ruiqi Ming, Ye Jiang, Jiaqi Fan, Chunchun An, Jinqi Li, Tongsheng Chen*, and Xinlei Li*, High-Efficiency Capture of Cells by Softening Cell Membrane, Small 18, 2106547 (2022). (影响因子 15.153)
[2] Ruiqi Ming, Senyu Yang, Ye Jiang, Chunchun An, Yuhua Yang, Dongfeng Diao, Yuanyuan Cao*, Tongsheng Chen, and Xinlei Li*, Capture and isolation of tumor cells by graphene intercalated carbon film, Applied Physics Letters 120, 063702 (2022). (影响因子 3.971)
申请国家发明专利1项。
邹静 (2022届 学硕)
发表一作SCI论文2篇:[1] Jing Zou, Kun Jin, Tongsheng Chen and Xinlei Li*, The effects of substrate morphology by regulating pseudopods formation on cell directional alignment and migration, Journal of Physics D: Applied Physics 55, 105401 (2022).
[2] Jing Zou, Jinqi Li, Tongsheng Chen and Xinlei Li*, Penetration mechanism of cells by vertical nanostructures, Physical Review E 102, 052401 (2020).
杨森宇 (2022届 专硕)
发表共同一作SCI论文1篇:Ruiqi Ming, Senyu Yang, Ye Jiang, Chunchun An, Yuhua Yang, Dongfeng Diao, Yuanyuan Cao*, Tongsheng Chen, and Xinlei Li*, Capture and isolation of tumor cells by graphene intercalated carbon film, Applied Physics Letters 120, 063702 (2022). (影响因子 3.971)
申请国家发明专利1项。
党泽春 (2021届 博士)
发表SCI论文1篇:Zechun Dang, Jizheng Sun, Jiaqi Fan, Jinqi Li, Xinlei Li*, and Tongsheng Chen*, Zinc oxide spiky nanoparticles: A promising nanomaterial for killing tumor cells, Materials Science & Engineering C 124, 112071 (2021). (影响因子 7.328)
范佳琪 (2021届)
发表SCI论文1篇:Jiaqi Fan, Zechun Dang, Ting Lu, Jinqi Li, Tongsheng Chen, Yuhua Yang, and Xinlei Li*, Local release and isolation of circulating tumor cells captured by the nano-morphologic substrate coated with gelatin under near-infrared light, Journal of Materials Science, 56, 16634 (2021).
申请国家发明专利1项。
卢汀 (2021届)
发表SCI论文1篇:Ting Lu, Senyu Yang, Bingqi Zhang, Xinlei Li*, and Tongsheng Chen*, Graphene oxide-doped photothermal heater in microchannel for thermophoretically shifting micro- and nano-particles, Journal of Applied Physics 130, 244901 (2021).
陈华东 (2020届,2019年获研究生国家奖学金)
发表SCI论文1篇:Huadong Chen, Hang Zang, Xinlei Li*, and Yanping Zhao*, Toward a Better Understanding of Hemiwicking: A Simple Model to Comprehensive Prediction, Langmuir, 35, 2854 (2019).
周静 (2019届,2018年获研究生国家奖学金)
发表SCI论文2篇:(1)J. Zhou, Y. Xiong, Z. C. Dang, J. Q. Li, Xinlei Li*, Y. H. Yang*, and Tongsheng Chen*, Origin of efficiency enhancement in cell capture on nanostructured arrays, Journal of Materials Science, 54, 4236 (2019).
(2)Jing Zhou, Xiaowei Zhang, Jizheng Sun, Zechun Dang, Jinqi Li, Xinlei Li* and Tongsheng Chen*, The effects of surface topography of nanostructure arrays on cell adhesion, Physical Chemistry Chemical Physics, 20, 22946 (2018).
臧航 (2019届)
发表SCI论文2篇:(1)Hang Zang,and Xinlei Li*, Physical understanding of the bending of nanostructures caused by cellular force, Physical Review E 101, 032406 (2020).
(2)Hang Zang,Huadong Chen, Xinlei Li*, and Yanping Zhao*, An analytical model for the bending of radial nanowire heterostructures, Physical Chemistry Chemical Physics, 21, 9477 (2019).
肖克 (2017届,毕业后在厦门大学攻读博士学位)
发表SCI论文2篇:(1)K. Xiao, Y. P. Zhao, G. Ouyang, and X. L. Li*, Modeling the effects of nanopatterned surfaces on wetting states of droplets, Nanoscale Research Letters, 12, 309 (2017).
(2)K. Xiao, Y. P. Zhao, G. Ouyang, and X. L. Li*, An analytical model of nanopatterned superhydrophobic surfaces, Journal of Coatings Technology and Research, 14, 1297 (2017).
2009 年6 月毕业于中山大学物理科学与工程技术学院,获材料物理与化学专业博士学位09/2005-06/2009 PHD in Materials Physics and Chemistry, Sun Yat-sen University, Guangzhou, P. R. ChinaThesis: Thermodynamic and kinetic theories of self-assembly of quantum dots and quantum rings Advisor: Prof. Guowei Yang
2009年7月至今 华南师范大学生物光子学研究院/激光生命科学教育部重点实验室 07/2009-Present, College of Biophotonics, South China Normal University, P. R. China
细胞与纳米结构相互作用机制、肿瘤细胞检测与分离、肿瘤治疗、图像分析与处理、机器学习
(*Corresponding author)
主要论著目录:
(*Corresponding author)
[1] Jinqi Li, Xinlei Li*, Yangfeng Zhang, Kun Jin, Ye Yuan, Ruiqi Ming, Yuhua Yang, and Tongsheng Chen*, An intravascular needle coated by ZnO nanoflowers for in vivo elimination of circulating tumor cells, Nano Research 16, 873 (2023). (影响因子 10.269)
[2] Nanxin Li, Kun Jin, Tongsheng Chen*, and Xinlei Li*, A static force model to analyze the nuclear deformation on cell adhesion to vertical nanostructures, Soft Matter 18, 6638-6644 (2022).
[3] Ruiqi Ming, Ye Jiang, Jiaqi Fan, Chunchun An, Jinqi Li, Tongsheng Chen*, and Xinlei Li*, High-Efficiency Capture of Cells by Softening Cell Membrane, Small 18, 2106547 (2022). (影响因子 15.153)
[4] Ruiqi Ming, Senyu Yang, Ye Jiang, Chunchun An, Yuhua Yang, Dongfeng Diao, Yuanyuan Cao*, Tongsheng Chen, and Xinlei Li*, Capture and isolation of tumor cells by graphene intercalated carbon film, Applied Physics Letters 120, 063702 (2022).
[5] Jing Zou, Kun Jin, Tongsheng Chen and Xinlei Li*, The effects of substrate morphology by regulating pseudopods formation on cell directional alignment and migration, Journal of Physics D: Applied Physics 55, 105401 (2022).
[6] Ting Lu, Senyu Yang, Bingqi Zhang, Xinlei Li*, and Tongsheng Chen*, Graphene oxide-doped photothermal heater in microchannel for thermophoretically shifting micro- and nano-particles, Journal of Applied Physics 130, 244901 (2021).
[7] Zechun Dang, Jizheng Sun, Jiaqi Fan, Jinqi Li, Xinlei Li*, and Tongsheng Chen*, Zinc oxide spiky nanoparticles: A promising nanomaterial for killing tumor cells, Materials Science & Engineering C 124, 112071 (2021).
[8] Jiaqi Fan, Zechun Dang, Ting Lu, Jinqi Li, Tongsheng Chen, Yuhua Yang, and Xinlei Li*, Local release and isolation of circulating tumor cells captured by the nano-morphologic substrate coated with gelatin under near-infrared light, Journal of Materials Science, 56, 16634 (2021).
[9] Xinlei Li*, The structural symmetry of nanoholes upon droplet epitaxy, Nanotechnology 32, 225602 (2021).
[10] Qingyun Jiang, Xinlei Li, and Chenping Yin*, A Study on Improving the Efficacy of Nanoparticle-Based Photothermal Therapy: From Nanoscale to Micron Scale to Millimeter Scale, Materials 14, 2407 (2021).
[11] Jing Zou, Jinqi Li, Tongsheng Chen and Xinlei Li*, Penetration mechanism of cells by vertical nanostructures, Physical Review E 102, 052401 (2020). (SCI indexed, IF 2.296)
[12] Hang Zang,and Xinlei Li*, Physical understanding of the bending of nanostructures caused by cellular force, Physical Review E 101, 032406 (2020). (SCI indexed, IF 2.296)
[13] Jinqi Li, Jizheng Sun, Tongsheng Chen and Xinlei Li*, Towards a better understanding of the effects of the magnetic nanoparticles size and magnetic field on cellular endocytosis, Journal of Physics D: Applied Physics 53, 175401 (2020). (SCI indexed, IF 3.196)
[14] Hang Zang,Huadong Chen, Xinlei Li*, and Yanping Zhao*, An analytical model for the bending of radial nanowire heterostructures, Physical Chemistry Chemical Physics, 21, 9477 (2019). (SCI indexed, IF 3.567)
[15] Huadong Chen, Hang Zang, Xinlei Li*, and Yanping Zhao*, Toward a Better Understanding of Hemiwicking: A Simple Model to Comprehensive Prediction, Langmuir, 35, 2854 (2019). (SCI indexed, IF 3.683)
[16] J. Zhou, Y. Xiong, Z. C. Dang, J. Q. Li, Xinlei Li*, Y. H. Yang*, and Tongsheng Chen*, Origin of efficiency enhancement in cell capture on nanostructured arrays, Journal of Materials Science, 54, 4236 (2019). (SCI indexed, IF 3.442)
[17] Zhiqin Zhong, Xinlei Li, Jiang Wu, Cheng Li, Ruo Bing Xie, Xiaoming Yuan, Xiaobin Niu, Wenhao Wang, Xiaorong Luo, Guojun Zhang, Zhiming M. Wang, Hark Hoe Tan, and Chennupati Jagadish, Wavelength-tunable InAsP quantum dots in InP nanowires, Applied Physics Letters, 115, 053101 (2019).
[18] Jing Zhou, Xiaowei Zhang, Jizheng Sun, Zechun Dang, Jinqi Li, Xinlei Li* and Tongsheng Chen*, The effects of surface topography of nanostructure arrays on cell adhesion, Physical Chemistry Chemical Physics, 20, 22946 (2018). (SCI indexed, IF 3.906)
[19] X. P. Meng and X. L. Li*, Size Limit and Energy Analysis of Nanoparticles during Wrapping Process by Membrane, Nanomaterials, 8, 899 (2018). (SCI indexed, IF 3.504)
[20] X. L. Li, J. Ni, and R. Q. Zhang*, A Thermodynamic Model of Diameter- and Temperature-dependent Semiconductor Nanowire Growth, Scientific Reports, 7, 15029 (2017). (SCI indexed, IF 4.122)
[21] K. Xiao, Y. P. Zhao, G. Ouyang, and X. L. Li*, Modeling the effects of nanopatterned surfaces on wetting states of droplets, Nanoscale Research Letters, 12, 309 (2017). (SCI indexed, IF 3.125)
[22] K. Xiao, Y. P. Zhao, G. Ouyang, and X. L. Li*, An analytical model of nanopatterned superhydrophobic surfaces, Journal of Coatings Technology and Research, 14, 1297 (2017). (SCI indexed, IF 1.619)
[23] Jiang Wu, Zhiming M. Wang, Xinlei Li, Yuriy I. Mazurand Gregory J. Salamo, Fabrication of ultralow-density quantum dots by droplet etching epitaxy, Journal of Materials Research, 32, 4095 (2017).
[24] X. L. Li*, Bactericidal mechanism of nanopatterned surfaces, Physical Chemistry Chemical Physics, 18, 1311 (2016). (SCI indexed, IF 3.906)
[25] X. L. Li* and T. S. Chen, Enhancement and suppression effects of a nanopatterned surface on bacterial adhesion, Physical Review E 93, 052419 (2016). (SCI indexed, IF 2.284)
[26] X. L. Li, C. X. Wang, and G. W. Yang*, Thermodynamic theory of growth of nanostructures, Progress in Materials Science, 64, 121 (2014). (SCI indexed, IF 27.417)
[27] X. L. Li,* J. Wu, Z. M. Wang,* B. L. Liang, J. H. Lee, E. S. Kim, and G. J. Salamo. Origin of nanohole formation by etching based on droplet epitaxy, Nanoscale, 6, 2675 (2014). (SCI indexed, IF 7.394)
[28] J. Wu#, Y. Hirono#, X. L. Li#, Z. M. Wang*, J. H. Lee, M. Benamara, S. Luo, Y. I. Mazur, E. S. Kim, and G. J. Salamo. Self-Assembly of Multiple Stacked Nanorings by Vertically Correlated Droplet Epitaxy, Advanced Functional Materials 24, 530 (2014). (# These authors contributed equally/同等贡献) (SCI indexed, IF 11.805)
[29] X. L. Li* and G. W. Yang, Modification of Stranski-Krastanov growth on the surface of nanowires,Nanotechnology, 25, 435605 (2014). (SCI indexed, IF 3.821)
[30] X. L. Li,* Modeling the size- and shape-dependent cohesive energy of nanomaterials and its applications in heterogeneous systems, Nanotechnology, 25, 185702 (2014). (SCI indexed, IF 3.821)
[31] X. L. Li*, Selective formation mechanisms of quantum dots on patterned substrates, Physical Chemistry Chemical Physics, 15, 5238 (2013). (SCI indexed, IF 4.493)
[32] X. L. Li*, Theory of controllable shape of quantum structures upon droplet epitaxy, Journal of Crystal Growth, 377, 59 (2013). (SCI indexed, IF 1.698)
[33] X. L. Li*, Size effects of carbon nanotubes and graphene on cellular uptake, EPL 100, 46002 (2012). (SCI indexed, IF 2.095)
[34] X. L. Li*, The influence of the atomic interactions in out-of-plane on surface energy and its applications in nanostructures, Journal of Applied Physics 112, 013524 (2012). (SCI indexed, IF 2.183)
[35] X. L. Li*, Size and shape effects on receptor-mediated endocytosis of nanoparticles, Journal of Applied Physics 111, 024702 (2012). (SCI indexed, IF 2.183)
[36] X. L. Li* and G. Ouyang, Thermodynamic theory of controlled formation of strained quantum dots on hole-patterned substrates, Journal of Applied Physics 109, 093508 (2011). (SCI indexed, IF 2.183)
[37] X. L. Li*, G. Ouyang and X. Tan, Thermodynamic stability of quantum dots on strained substrates, Physica E 43, 1755 (2011). (SCI indexed, IF 2.0)
[38] X. L. Li* and D. Xing, A simple method to evaluate the optimal size of nanoparticles for endocytosis based on kinetic diffusion of receptors, Applied Physics Letters 97, 153704 (2010). (SCI indexed, IF 3.302)
[39] X. L. Li*, Y. Y. Cao and G. W. Yang, Thermodynamic theory of two-dimensional to three-dimensional growth transition in quantum dots self-assembly, Physical Chemistry Chemical Physics 12, 4768 (2010). (SCI indexed, IF 4.493)
[40] X. L. Li*, Formation Mechanisms of Multiple Concentric Nanoring Structures upon Droplet Epitaxy, Journal of Physical Chemistry C 114, 15343 (2010). (SCI indexed, IF 4.772)
[41] X. L. Li*, Thermodynamic Theory of quantum dot self-assembly on strained substrates, Journal of Physical Chemistry C 114, 2018 (2010). (SCI indexed, IF 4.772)
[42] X. L. Li*, Thermodynamic analysis on the stability and evolution mechanism of self-assembled quantum dots, Applied Surface Science 256, 4023 (2010). (SCI indexed, IF 2.711)
[43] X. L. Li*, Surface chemical potential in multilayered Stranski-Krastanow systems: An analytic study and anticipated applications, Journal of Applied Physics 106, 113520 (2009). (SCI indexed, IF 2.183)
[44] X. L. Li and G. W. Yang, On the physical understanding of quantum rings self-assembly upon droplet epitaxy, Journal of Applied Physics 105, 103507 (2009). (SCI indexed, IF 2.183)
[45] X. L. Li and G. W. Yang, Thermodynamic theory of shape evolution induced by Si capping in Ge quantum dots self-assembly, Journal of Applied Physics 105, 013510 (2009). (SCI indexed, IF 2.183)
[46] X. L. Li and G. W. Yang, Strain self-releasing mechanism in heteroepitaxy on nanowire, Journal of Physical Chemistry C 113, 12402 (2009). (SCI indexed, IF 4.772)
[47] X. L. Li and G. W. Yang, Theoretical determination of contact angle in quantum dot self-assembly, Applied Physics Letters 92, 171902 (2008). (SCI indexed, IF 3.302)
[48] X. L. Li and G. W. Yang, Growth mechanisms of quantum ring self-assembly upon droplet epitaxy, Journal of Physical Chemistry C 112, 7693 (2008). (SCI indexed, IF 4.772)
[49] X. L. Li, G. Ouyang and G. W. Yang, A thermodynamic theory of the self-assembly of quantum dots, New Journal of Physics 10, 043007 (2008). (SCI indexed, IF 3.558)
[50] X. L. Li, G. Ouyang and G. W. Yang, Surface Alloying at the Nanoscale: Mo on Au Nanocrystalline Films, Nanotechnology 19, 505303 (2008). (SCI indexed, IF 3.821)
[51] X. L. Li, G. Ouyang and G. W. Yang, Thermodynamic model of metal-induced self-assembly of Ge quantum dots on Si substrates, European Physical Journal B 62, 295 (2008). (SCI indexed, IF 1.345)
[52] X. L. Li, G. Ouyang and G. W. Yang, Thermodynamic theory of nucleation and shape transition of strained quantum dots,Physical Review B 75, 245428 (2007). (SCI indexed, IF 3.736)
[53] Y. Y. Cao, X. L. Li and G. W. Yang, Physical mechanism of quantum dot to quantum ring transformation upon capping process, Journal of Applied Physics 109, 083542 (2011).
[54] Y. Y. Cao, X. L. Li and G. W. Yang, Wetting layer evolution upon quantum dots self-assembly, Applied Physics Letters 95, 231902 (2009).
[55] G. Ouyang, X. L. Li and G. W. Yang, Superheating and melting of nanocavities, Applied Physics Letters 92, 051902 (2008).
[56] X. Tan, X. L. Li and G. W. Yang, Theoretical strategy for self-assembly of quantum rings, Physical Review B 77, 245322 (2008).
[57] G. Ouyang, X. L. Li, X. Tan and G. W. Yang, Surface free energy of nanowires, Nanotechnology 19, 045709 (2008).
[58] G. Ouyang, X. L. Li and G. W. Yang, Sink-effect of nanocavities: Thermodynamics and kinetic approach, Applied Physics Letters 91, 051901 (2007).
[59] G. Ouyang, X. L. Li, X. Tan and G. W. Yang, Anomalous Young’s modulus of a nanotube, Physical Review B 76, 193406 (2007).
[60] G. Ouyang, X. L. Li, X. Tan and G. W. Yang, Size-induced strain and stiffness of nanocrystals, Applied Physics Letters 89, 031904 (2006).